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ABSTRACT
; Granular soil is represented in this work by 2-D random
g arrays of elastic, rough, quartz spheres using the "distinct
element"™ method. The 3-D computer code TRUBAL, originally

developed by Peter Cundall, has been modified at RPI by the

-~

introduction of a general solution to the Hertz-Mindlin contact

-l

problem. This has been achieved by attaching a subroutine to

the original code, which describes the nonlinear

o
* by

force-displacement relationship at the intergranular contacts,
! by means of plasticity theory and kinematic hardening. The
above modified program (CONBAL-2), developed as part of another
! RPI project, can perform 2-D simulations and has already been
used to study the dynamic small strain behavior as well as the
large strain behavior of sand. The 2-D small strain
simulations in this report include the determination of
compressional wvave velocities for isotropically and
A anisotropically loaded random arrays of spheres. The results
are compared with excellent agreement to existing analytical
and numerical solutions, as well as to experiments performed on

W) the large triaxial cubical specimen at the University of Texas.

It is found that the fabric of the material plays a very
important role in the above phenomena. In all stages of the A1)
simulations, the observed macroscopic phenomena are related to A

the microscopic phenomena at the interparticle contact level,

by 1R R VTACEN N KN . { T r A AT A T T AT AT TR T AT AN YA
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INTRODUCTION
Since the early 1960's, a large number of experimental
studies has been performed on the small strain behavior of sand
aiming at providing empirical correlations for practical use
(Hardin and Richart, 1963, Hardin and Black, 1966, Drnevich and
Richart, 1970, Dobry et al, 1982). The equations relating the

shear modulus, G

max’ to the void ratio, e, and the effective

confining pressure, o_, proposed by Hardin and Richart (1963),

o'
Seed and Idriss (1970) and Seed et al (1984) are especially
important to this report. These empirical relationships are
based on the assumption that the soil can be treated as an

elastic, isotropic solid. 1In all three correlations:

Gpax~ A fle) o5 (1)
where A is a constant, f(e) is an experimentally defined
function of the void ratio, e, Fo = 1/3(o 1t ?2 + ?3) is the
mean effective stress, and p is an experimentally defined
exponent which has been found to bé approximately 0.5. The
above empirical relations assume that the value of Gma (and

X

thus, the wave velocity, Vs = /Gmax/p' where p 1is the mass

density of the soil), is the same for isotropically and

anisotropically loaded sand, provided that the effective mean

stress, Fo'

is the same. Furthermore, all correlations assume
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that for the anisotropic loading case, G and V_ do not H::'

_ max s .::,.:
. . . DAA)
change in direction. aibhy!
E These assumptions for G .  in sands have been challenged :'."5:
‘ .

% by the experimental results obtained by Schmertmann (1978),
"
Roesler (1979), Knox et al (1982), and Yu and Richart (1984). "'3
@ It was established by these researchers that both the -- .:
compressional, vp, and shear, Vs, wave velocities depend on the ';
L e,
g stresses in the direction of wave propagation and particle g‘
motion polarization, and not on the effective mean stress. i

- oy
@ Stokoe et al (1980) developed at the University of Texas :’*
L) .‘
! at Austin a large scale, 7 X 7 X 7 £t cubical triaxial facility ‘:‘-'
i for the specific purpose of measuring V. and 5 in dry sand. 'o:;"'l
g3 - -y
& In this facility, a triaxial state of stress, o, * o, # 0, (0%0 '::‘:

r

E in dry sand) can be achieved. All tests performed to date at Lo
& the University of Texas have used a locally found, medium to .
E, fine, washed mortar sand classified as SP, with effective grain ::z-'
, RSN
size, D10=0.28 mm and a uniformity coefficient, Cu, of 1.7. k:*
S, The sand is placed by the raining technique and tested dry. :-;-\:;.
e
o~ The values of the principal stresses have ranged between 15 psi Qe
E" and 40 psi, with the stress ratio, K = °l/°3 = 1 to 2.67. ;ﬁi-',.
§3 Kopperman et al (1982) used this facility to study the effect -\,
oY
of the stresses on the propagation velocity of compressional .‘é\

E‘ waves, Vp. They caused P-waves to propagate along one of the \2\
v v'
- :.‘,"']*
@ :*:
Vi)
% N
Ny
\]
\u
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principél stresses (aa), while varying the others; they

concluded that:

Vp = L 02 (fps) (2)
where L = 220 to 290 and m = 0.20 to 0.24 are experimentally
defined constants. The sensitivity of vp on o, and its
insé%itivity to variations in the other two principal stresses,
% and o perpendicular to wave propagation is illustrated in
Fig. 1.

In a similar way, Knox et al (1982) studied the

propagation of shear waves under anisotropic conditions and

concluded that:

vV, = F o!:a ol;b a!é\c (fps) (3)
where F is a constant, ma = mb = 0,09 to 0.12, and mc = 0 to
0.01. Thus, in these two cases the experimental findings of
Schmertmann (1978) and Roesler (1979) were confirmed, and it
was established that empirical correlations, such as Eq. 1, do
not adequately describe the behavior of anisotropically loaded
sand, and they need to be revised and upgraded. In most cases
sand is anisotropically 1loaded, and more than 2 elastic

constants may be needed. For example, if 0, = 0, * 0gq, the soil
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will behave as a transversely isotropic medium and 5 constants o :
(moduli) will be needed; in the more general case of o) * 0, * il
O3, the sand may behave as an orthotropic continuum and at e
least 9 constants may be required (Sokclnikoff, 1956). ;.'-:‘-:j

This contradiction between the early and the more recent Tea

{s
&>
S 5

laboratory data indicates that the constitutive modelling s

'

{‘..
2

phenomenon of soils at small strains is more complex than

i

originally anticipated. While it is true that a number of

phenomenological continuum models of the small strain (elastic)

{f‘;ﬁ‘}
:té".."

response of sand have been proposed (Rowe, 1971, Coon ard Evans

1971, Lade and Nelson, 1988), they apply only to isotropic .:?':?
sands. On the other hand, experimental studies by Oda (1974), :Za“
Oda and Konishi (1974) , Oda et al (1983, 1985) have indicated :ﬁ?
the potential of a particulate mechanics approach to explain :NH‘:Z._
the observed behavior. This is further strengthened by the RSy
; findings of earlier analytical work by Duffy and Mindlin \;&%
(1957), Deresiewicz (1958a), Duffy (1959), and others. :\bf
Consequently, it is generally accepted that at small strains ‘i’
the behavior of a granular medium is governed by the elasticity ‘:::
of the particles (i.e. the force-displacement nonlinearity at r:
the interparticle contacts), while in the very large strain _‘_4-;-,_
range the geometrical arrangement and the kinematics of the S:‘:{'_
particles become dominant. ;?.::{‘::::
R
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Although a number of analytical, experimental and

numerical particulate mechanics studies have been performed in
the past on regular and random arrays of spheres, their scope
has been limited by the available computer capabilities and the
lack of a realistic force-deformation law at the intergranular
contacts. In the last few years the wider availability of
supercomputers for basic engineering research and the
development, at RPI, of a general solution to the Hertz-Mindlin
problem at the contact between two identical elastic, rough
spheres (Seridi and Dobry, 1984, Dobry et al, 1988) have
significantly improved the situation. This solution, coded as
program CONTACT, could now be used as a subroutine in a finite
element program which describes the stress-strain response of
granular soil. This was done as part of the current AFOSR
sponsored research, and Petrakis and Dobry (1987, 1988a, 1988b)
used the above relationship in a nonlinear finite element

scheme to succesfully predict the stress-strain response of a

regular/random array of equal spheres.
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' RANDOM ARRAYS AND THE DISTINCT ELEMENT METHOD

Several approaches have been used to model the effect of
fandomness and deviations from regularity in arrays of equal or
unequal spheres. Serrano and Rodrigues-Ortiz (1973) suggested
a method for generating a random configuration of unequal disks
or spheres having a prescribed grain size distribution.
Cundall and Strack (1979) used a similar approach in conjuction
with their "distinct element method" to succesfully simulate
the mechanical response of arrays and disks and spheres under a
variety of loading conditions. In their method, an explicit
finite difference formulation is used to determine the static
response of the array to applied strains (program TRUBAL) or to
a boundary displacement (program BALL).

TRUBAL uses a periodic space in a form of a cube (3-D) or
square (2-D), such as that of Fig. 2, to minimize the effect of
the boundaries and allow the use of a relatively small number
of particles. A uniform strain field 1is applied to all
particles and the corresponding contact forces are calculated
from the relative displacements between neighboring spheres.
Initially, the program used an arbitrary, linear, non pressure
dependent law to describe the force-deformation behavior at
each interparticle cointact; in a later version of the program

(zhang and Cundall, 1986) a 1linear ©pressure dependent

".)—'.n\'-'F..\ LN
. D) g

[P
o

T

VUV AN PRIV IV

55

Z
Y

o "5 4 nA S 54
7Y ?'1"%'1 2

"}W‘ﬁ-.'

o

P
PR

¥

d



e 'a 800" 3 Al Ria A% a0 ala" ~ . - . . .
t s U U Favathe* vale 't R RIS Pk iat vad at vak Vantinl al R A Al . A IS4 a3 aAR et

«':.j."
Ry

1 d
._-?'

eyt
A

e

7

¢

GAS
i
force-deformation relationship was introduced. As illustrated o::..':
N 0
by Fig. 3, these contact forces, Pi, produce in each sphere a DA
resultant unbalanced force, ZPi , and unbalanced moment, ZMi, 4-:.;-

7,

\
which induce linear and angular accelerations in the particle. a:?"
by
These accelerations are used in turn to compute a new particle SN
A
position at the end of a time increment, At, and new contact 2{’54 3
. : O
forces. The process is repeated until static equilibrium is j;,;”,{');\

' e
achieved (IM, = IP, = 0). The method has the advantage of shait
o
decreasing substantially the required computer memory, as no :’:_-«.Sr\.
Gttt
large stiffness matrices need to be calculated and inverted. ’"‘v""
ey
However, the execution time is large due to the great number of ANt
iterations needed to assure static equilibrium. A
RGN
Cundall and Strack (1979), Strack and Cundall (1984) and 1::}-*1-
-..ﬂ"‘ %
Zhang and Cundall (1986) have used BALL and TRUBAL for D
e
succesful simulations of monotonic direct simple shear and ‘*é_
R,
compression triaxial tests. kﬁ ~
"5
The available program TRUBAL (Strack and Cundall, 1984) Wi
was modified at RPI by Ng and Dobry (1988) within another, NSF ;r-r
sponsored project, by replacing the existing arbitrary linearly j-'.i;iﬁ
ERTA
elastic-perfectly plastic, non pressure dependent, LOROt
force-displacement relation at the intergranular contacts, by f:;.:
AL
the more realistic and rigorous Hertz-Mindlin contact law. %::’s::.
'\‘\ **
This was accomplished by attaching the program CONTACT bt
[ ]
A
A
'\‘,.'\_‘
RN

A%
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e
A
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described previously, as a subroutine in TRUBAL (Table 1). The

new modified program was named CONBAL-2 (CONtact truBAL in
2-dimensions). CONBAL-2 is a two-dimensional version of TRUBAL
which incorporates CONTACT and has also been modified to run
more efficiently on the computer. Furthermore, CONBAL-2 does
not allow any rotation or rolling of the particles, as this
causes as yet unsolved problems in the numerical simulations.
The 2-D character and lack of particle rotation in CONBAL-2
makes the array somewhat stronger than actual, 3-D random
arrays and soils; Ng and Dobry (1988) have approximately
corrected for this by reducing the interparticle angle of
friction. Therefore, CONBAL-2 is very similar to the original
program TRUBAL, except for the two differences just noted, and
for the very important introduction of the effect of the normal
force which is now rigorously modelled by the
Hertz-Mindlin-Dobry algorithm.

The accuracy of CONBAL-2 was checked by comparing the
results of a simulation of monotonic pure shear loading on an
isotropically compressed simple cubic array of quartz spheres,
to the rigorous solution obtained by Deresiewicz (1958). The
"window" of the nine identical spheres used in the CONBAL-2
simulation appears in Figure 4. The results of the numerical

simulation are plotted in Figure 4 (solid line), and are in

e SRRY. Sy Sl 8
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i:‘.: excellent agreement with the rigorous solution (crosses). a'?‘,.,
| Additional numerical simulations appear in Ng and Dobry (1988); e
1". they include a number of large strain numerical experiments on .2:::;
) random arrays of equal or unequal quartz spheres under cyclic "“'
s and static, drained and undrained conditions. The results of ‘f

A

1y these simulations are in excellent agreement with comparable

experimental data on granular soils reported in the literature. '#'q

Moreover, CONBAL-2 has shown to have considerable predictive ot
- power. For example, Ng and Dobry (1988) subjected the 2-D :E
4 array of 57 unequal spheres shown in Fig. 5, to a monotonical E"‘{:
constant-volume uniaxial compression, after the array had been ICP'..
consolidated under an isotropic pressure, ?o' of 3.4 kgf/cmz. :5:

E This was done by increasing the vertical stress, oy acting on :
the array, while varying the horizontal compressive stress, DY F- X

.- as much as necessary to keep the volume constant. To model the i_:;'
i situation during the corresponding wundrained compression Cl“::
, "triaxial"™ test in which the "cell pressure” would be kept \::\i‘:‘-
,E constant at ?6=3.4 kgf/cmz, a "pore water pressure” u=—(02—3.4) ;::,:
was defined. .:Et

! The results of this simulation are summarized in Fig. 6. ‘\
2 The figure includes the calculated axial stress-strain curve in EE_(
o Fig. 6a, the variation of pore pressure, u, vs axial strain in :ﬁ:x:j
Fig. 6b, and the effective stress path in Fig. 6c. The :;3
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behavior.of the granular soil simulated is clearly dilative; it
is accurately modelled by CONBAL-2, which yields results very
similar to those measured in undrained triaxial tests on
uniform, rounded, dense Ottawa sand, such as those of Vaid and
Chern (1983) (specimen S-3), also included in Fig. 6. At first
glance they may not look comparable; however, the scales are
different and, with this in mind, it may be seen that the
stress~strain, pore pressure-strain curves and the stress path

on the p-q space, are remarkably similar between specimen S-3

and the numerical simulation.

-
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NUMERICAL SIMULATIONS OF THE SMALL STRAIN BEHAVIOR OF QUARTZ 3‘::3;':;?5
SAND S
After program CONBAL-2 was checked and became ready to .é's:i
use, a copy was made available to this AFOSR project for i ;5
research on the stress-strain behavior and development of a :;?
constitutive relation for dry granual soil. ﬁgﬁ?
As a first step, it was decided to start simulating .$§$'
phenomena in the small strain range, and at a later stage focus :%§5
on the large strain, fully nonlinear inelastic behavior. éxjg
Furthermore, it was also decided to compare the results of rﬁﬁﬁ
CONBAL-2 with answers obtained using the analytical and &ﬁﬁ
numerical procedures previously developed in this project by WE?
Petrakis and Dobry (1986, 1987), as well as with experimental V;E%
data in the literature. b&@
Random arrays of equal spheres were generated first, since R;"

the previous analytical and numerical methods were developed 5?3:
for equal spheres and much available experimental data are h;t'
obtained on uniform sand. Moreover, the force-deformation ;ggﬁ
relations at the interparticle contacts developed by Hertz %;Ej
(1882), Cattaneo (1938), Mindlin (1949) and Mindlin and Ny
Deresiewicz (1953) apply only to equal spheres of the same '?.'..}:

o

: -,__{*.;{

material; subroutine CONTACT is based on these formulations and

z)ﬁ"

cannot, in principle, model the contact behavior of unequal or
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dissimiiar spheres. Therefore, program CONBAL-2 yields
rigorous results only when arrays of equal spheres are
generated; however, the same program, with certain assﬁmptions,
can handle in first approximation moderately unequal spheres of
the same material, provided that their diameters are not very
different. In this section, results on packings of equal
spheres will be presented, together with some results on an

array of moderately unequal spheres.

i)Isotropically Compressed Random Arrays of Spheres

Two different 2-D random arrays of 477 identical particles
having the properties of quartz (Gs= 295182 kgf/cmz, vs=0.15,
f=0.5, White, 1964), were generated using CONBAL-2. In the
following distinct element simulations, f=0.35 was used instead
of f=0.5 to correct for the effects of 2-D and absence of
particle rotation as previously discussed. The first array
was a very loose one, with an average coordination number, CN
(number of contacts per sphere), of 2.1, while the second was
medium dense with CN=3.0. It should be noted that when
computing the average number of contacts per sphere in a random
array, all spheres, including those with no contacts, are
counted, and this .causes the average coordination number to be
low. These two arrays were then subjected to three different

values of isotropic pressure (ao= 0.91, 3.34 and 6.98 kgf/cmz),
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without significant change in their average number of contacts.

The configuration of the second assemblage, with CN=3.0,

and subjected to 0115995 95" 0.91 kgf/cm2 is shown in Fig. 7. 3 :E
The rectangles in this figure represent the magnitudes and A :E:’..:
directions of the contact forces; there are four different '.‘:.‘!:"
rectangle widths,_ each one of them corresponding to a range of j’;:ggﬁ
forces between four equal fractions of the maximum computed ss;;e&%:g
contact force. For example, if the maximum contact force is F “'

A

kgf, the narrowest rectangle stands for the range of forces

ol
Lol A

between 0 and F/4 kgf, the next wider rectangle for the range ) ':,;
of forces between F/4 and F/2 kgf, etc. It can be also '?1.
observed that this assemblage of equal spheres has crystalized; :: :'
that is, areas of regular packing appear within the random ‘%;‘.L‘
structure. This is in agreement with the experimental findings :"
of Smith et al (1929), Bernal and Mason (1960), Bernal et al :".::'{::‘
(1964), Davis and Deresiewicz (1974), Shahinpoor and Shahrpass '?:E:gjz
(1982) and others, reported in Petrakis and Dobry (1986, ‘:"::::
1988a), who proposed that a random packing of equal spheres can ;::.5
be represented by a combination of regular arrays. Some of ,355 .
these regular packings in Fig. 7 are not subjected to any \E‘L
contact force, with the forces being supported through arching -,4.-,-
by surrounding packings. This crystalization has lumped the h|":“
array into N constituents, where N is the number of different """‘
A,

%

:?:f
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packings within the aggregate, and thus has increased the §%§%
characteristic size of the smallest constituent. As a result, E%&E
the array is not completely isotropic under isotropic stress; a Q%gg
much larger r ‘mber of spheres than 477 is needed in order to ;}ﬁﬁ
have a uniform spatial distribution of the crystalized regions ﬁﬁﬁ
and achieve a statistically isotropic medium. Moreover, it can 33&@
be seen 'in Fig. 7 that the applied stresses are mainly .:E:EEEE::E
transmitted through columns of particles, in which all contacts -:::!':"
along the column axis experience approximately the same contact %gg;?
force. These contact force directions cover a large spectrum %; !
of angles, with perhaps some preference toward the two SRl
directions parallel to the boundaries. These conclusions '?éit
obtained from a visual inspection of Fig. 7 are also $ﬁf§

illustrated in Figure 8, where the frequency distribution of
contact angles is shown in a polar plot together with other
micromechanical statistics, such as the frequency distributions

of mobilized angle (angle between contact force and contact

normal), coofdination number and contact force. This 33;;1
477-particle packing can be approximated as isotropic under its )
current isotropic loading, if the effect of the orientation of FAYY

the contacts along the loading directions is smoothed in Figure ;{q&
8. A
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The two 477-particle random arrays with average
coordination numbers CN=2.1 and 3.0, were subsequently used to

compute the small strain shear modulus, G under isotropic

max’
pressure. For this, both random packings were subjected to a
small increment of macroscopic shear strain, d7=lx1076, the
corresponding macroscopic shear stress, dr, was calculated, and
the shear modulus was computed as Gmax=dx/dv. This was done
for both arrays at the three confining pressures 0= 0.91, 3.34

2

and 6.98 kgf/cm®. The resulting shear modulus, G has been

max’
plotted versus o and the coordination number in Fig. 9, which
also includes the small strain shear modulus for the simple
cubic array in two dimensions (CN=4). For a given ° the shear
modulus in Figure 9 is approximately linearly proportional to
CN, similar to the analytical results reported by Yanagisawa
(1983) and Petrakis and Dobry (1986, 1988a), indicating that
the stiffness of a packing of spheres is controlled by both
normal stress and the number of load transmitting contacts.
Since most contacts have not failed in the random array of Fig.
7 (see plot of mobilized angle in Fig. 8) the whole granular
assembly behaves, through its contacts, like a nonlinear truss
vhose stiffness is increased when new members are added. As

expected, the deformation characteristics of the material of

the particles control the macroscopic stress~strain response of
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this granular medium under isotropic pressure, with CN being
the other major factor. The same plot may also be interpreted

as a plot of the shear wave velocity, V versus the

s’
coordination number, CN, if it is assumed that the wave length
is significantly larger than the radius of the spheres.

Figure 10 contains the above data as well as points
derived by i) the Self Consistent Method (Petrakis and Dobry,
1986, 1988a); ii) analytical solutions for regular arrays; and
finally, iii) the analytical expressions recently reported by
Walton (1987), for random packings of equal spheres. Figure 10
is for the same three values of confining pressure, oy = 0.91,
3.34 and 6.98 kgf/cmz. Walton, by considering the pressure
dependent force-deformation Dbehavior of both normal and
tangential compliances at the interparticle contacts, derived
the following expressions for the two elastic moduli (Lame

%*
constants), A and 4 = G of a random packing of equal

max’
elastic spheres with an infinite coefficient of friction,

subjected to isotropic compression, o _:

o]
2 2
- C 3¢2(CN)2a, 1/3 "
A= g
10(2B + C)
. (5B+C)  342(CN)2a, 1/3
=G =
A e T 0(2B+ C) B
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¢=(1-n), where n is the average porosity of the medium, B and C
are constants which depend on the material properties of the

spheres, o and -~ and CN is the average coordination number.

In Fig. 10, the points derived by the Self-Consistent

Method and Egqs. 4 and 5, are the result of a three dimensional

analysis, unlike the points in Fig. 9 which are for two

dimensions. Since the simple cubic array appears in both plots

with coordination numbers CN=4 (2-D) and CN=6 (3-D), but with

*
=y it was decided to

Gmax !

the same value of shear modulus,
multiply the coordination number of all 2-D distinct element
"adjust" for the

simulations by 6/4=1.5, to approximately

additional third dimension. Furthermore, since the 3-D Self
Consistent Method was applied using the same value of quartz
modulus for the spheres as used in the other methods, but with
Poisson's ratio of the spheres, vs=0, in order to eliminate the

anisotropy inherent to the cubic arrays (Petrakis and Dobry,

1986, 1988a), Eqs 4 and 5 were modified accordingly.
*

Specifically, for » =0, A and C become 0 and Bcl/(qus). The

final result is the very consistent plot in Fig. 10 using

points from four different methods; they essentially confirm
the hypothesis presented by Yanagisawa (1983) and Petrakis and

G of a

Dobry (1986) that the small strain shear modulus, max’

random array of equal spheres is essentially a linear function
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& of the average number of contacts per particle. In Eg. 5 the i’:ﬁs
relation between Gmax and CN is not linear but the product of b

g the multiplication of the two factors: porosity, n, and CN, ":E'
r,;; results in an essentially linear relationship between “*=Gmax
m and CN, once the influence of n on CN is considered. -j
Sty

ﬁ ii)Anisotropically Compressed Random Arrays of Spheres '::i
? The same array already discussed, with 477 equal, elastic "::::
spheres and coordination number, CN=3, consolidated . )

E isotropically at Oy = 0pp = 0= 0.91 kgf/cm2 (Fig. 7) was :E:.):
further loaded under biaxial compression to o,, = 2.33 kgf/cmz, 'E::E

! while keeping 0y, constant. The stress path appears in Fig. 11 E
EE as stress path (b). This was done to: i) investigate the -* ;‘
B influence of the magnitude and direction of the principal :
5 stresses on the velocity of longitudinal waves, Vp, propagating ..
‘ through this medium, ii) interpret the experimental findings of .E*
& Kopperman et al (1982), and iii) verify the findings of the ;‘:‘
" nonlinear finite element model presented by Petrakis and Dobry ;q
5 (1987, 1988b). e
;kj_ To compute the wave velocities, Vp, the constrained moduli é.‘.i
| Dii'vgza p, were calculated first as follows: once the desired ::’_
{3 stress ratio, K=°1/°2=°22/°11' was reached at specific points E;
» along stress path (b) in Fig. 11, very small strain increments, E:
L d‘ll' d¢22, equal to 1.062)(10_6 were applied to the array with ,.;
N

N

.
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appropriate signs. The corresponding stress increments doll,

6022 were computed, and finally, the small strain constrained

moduli D§§)=daii/deii, were calculated both in the direction of
the major (alsozz) and minor (°2=°11) principal stresses. The
results of these simulations are shown in Fig. 12, where the

small strain constrained moduli of the random packing at every
(K)

stress ratio K, Dii , normalized by the constrained modulus

under the initial isotropic pressure Dgi), are plotted against
the stress ratio, K=<722 / °11=°1/°2' Figure 12 also includes
data points from a number of experiments on sand performed at
the University of Texas by Kopperman et al (1982), and results
of the nonlinear finite element model proposed by Petrakis and
Dobry (1987), all performed under analogous conditions to those
of the CONBAL-2 nonlinear distinct element simulation.

The agreement between all normalized results in Figure 12,

is excellent, and a straight line of equation Dég)/béé)
(azz/all)'38 = K'38 could be fitted to all numerical and

experimental data points included in the figure. It should be

noted that, if the change in sand density as K increases is

(K) ,n (1) _ ¢, (K) ., (1),2 . . .
neglected, D,, /Dy5" = [Vp /Vp 1°. From their experiments in

sand, Kopperman et al (1982) found that Eq. 2 was applicable

(K)

(1) . 0.4
22 /D22 aK , very

with 220<L=290 and m=0.2. This gives D

similar to the line in Fig. 12. Furthermore, it was found that
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the actual values of Vp calculated by CONBAL-2 for the array of
Fig. 7, are within 10% of those measured by Kopperman et al
(1982). Figure 12 shows that the nain conclusion obtained from
the University of Texas laboratory results, that the P-wave
velocity (Vp = ¢yD/p) propagating along a principal stress
direction is only a function of that principal stress, is fully
predicted by the nonlinear distinct element method. Again,
this is an effect of the particulate nature of the soil, which
can not be interpreted and reproduced analytically unless this
particulate nature is taken into account.

Figures 13 and 14 depict the positions of the spheres, the
relative magnitudes and directions of the contact forces, and
the associated micromechanical statistical information, at the
last stage of anisotropic loading, at K=022/011=2.33/0.91=2.56.
This is the last stage of the biaxial loading simulation, whose
particle configuration and micromechanical statistics under the

2 (K=1) was

initial isotropic pressure 0,= oll=022=0.91 kgf/cm
shown in Figs. 7 and 8.

Comparing the array configurations of the above two
loading stages in Figs. 7 and 13, it can be seen that the array
remains crystalized throughout the loading process, and that a

number of the regular packings within the array remain stress

free.
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Siﬁilarly to Fig. 7, the four different widths of the

.'f—

rectangles in Fig. 13 represent the ranges of intensity of
A contact forces relative to the maximum contact force in each
; case. When the random array 1is subjected to isotropic
pressure, the distribution of the contact forces was more or

less uniform, with similar contact forces in all directions

s ]

(Fig. 8). On the other hand, and as shown in Fig. 13 and 14,
after the array was loaded vertically while the horizontal
stress, o)1+ Wwas kept constant, the number of contacts in the
¥ vertical direction increased and most of the columns
transmitting loads are now essentially vertical or horizontal.
These columns are similar to the "stiff chains" reported by
Cundall and Strack (1983). The number of contacts in the

horizontal direction has somewhat decreased, while in all other

2 directions has decreased substantially. The magnitudes of the t:i'
Rty
oy

) contact forces in the vertical contacts have also increased. 'qg

. Wit

: Figure 14 contains the micromechanical statistics o2,

X calculated for the anisotropic stress condition of Fig. 13, e
R :Jl‘:,: b
including frequency distributions of contact angle, mobilized ;3—
\ o
AL

: angle, coordination number and magnitude of contact force. The
polar plot of frequency distribution of contact angle,
quantifies the increase in the number of contacts 1in the

vertical direction, previously discussed, as well as the
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decrease of number of contacts in the other directions. Figure '?, ...::
: : _ : v

14 also shows that at this point of the biaxial compression el
loading most contacts have failed, the particles have k@f;
.h;‘ ()
rearranged themselves to more stable conditions, and the E&'&
Y

distribution of coordination numbers has changed little. The AT
polar plot of the frequency distribution of contact angle in iﬁms
SO0

Fig. 14 resembles a cross, with most of the contacts aligned '“qs
Y]

parallel to the applied principal stresses. This is consistent e
.

with the vertical/horizontal columns transmitting loads in Fig. bif
W
13, and is different from the structure of the array under ;&gs
D000
isotropic stress presented in Figs. 7 and 8. There, the .“¢5
.9
frequency distributions of contact angle and contact forces VoA
:-3:-‘-'“

were approximately uniform and few contacts had failed. Eﬁﬁ»
Based on the results of the numerical simulations and the Sy

X 3
above discussion, it is concluded that changes in the structure A

of the random packings and granular soils are responsible for

[ Pp
.j‘\
R v
ST

Lty

1, »
<

v,
(S

the observed macroscopic behavior, and specifically for the

dependence of the compressional wave velocity only on the Sfﬁvﬂ
principal stress in the direction of wave propagation. Under 3%%?
isotropic loading, the orientations of the contacts have a more :}Fff
or less uniform distribution, the material behaves f::éf
isotropically and the wave propagation velocity is a function ;\%5

V]

of the isotropic stress, 0. Under biaxial (2-D) or triaxial
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(3-D) compression, a significant number of contacts is gained gﬁ%&
4 .Q."‘l

in the direction of the increased major principal stress, oy LN
. . . R

while contacts are lost in all other directions. In the other Qy“k
()- - y

. . . . . . W)

two principal directions in which the stresses oy (and 03) are ﬁ? {
kept constant, the number of contacts decreases, but not ii;f
considerably, while many contacts are lost in all non principal '§E§$
KA

directions. These contacts along principal directions form §$@ﬁ
."" ‘b‘

"branches” or "stiff chains" parallel to the principal stresses . ¥?
which transmit most of the applied principal stresses from %ﬁ_,f
S0

boundary to boundary. The result is a structure reminiscent of §' k
. SR

a simple cubic array loaded by stresses 0y 95 and oq parallel =5‘~
to the main axes of the array, and with the effect of each hi*g
.40

(N (]

principal stress being uncoupled from the other two. This &Fﬁ
it

; ; : . O

uncoupling, which in the simple cubic array happens naturally !
due to the ~neometry of the array, develops in the random array Ei?ﬁ
N

as a co equence of these stiff columns or "branches" of kﬁhﬁ'

v
. "}

particles which carry the applied load. Therefore, as in the :ﬁﬁ,
ST
case of the simple cubic array (Petrakis and Dobry 1986, 1987), {SEEJ
:"'-;"-)'\
the longitudinal modulus, D, in any principal direction is a vl
St

VA

function only of the stress in this direction and is unaffected Yo
by wvariations in the stresses in the other directions. fﬁwg

Although the CONBAL-2 runs discussed here were two dimensional,

the authors postulate that the same phenomenon occurs in

-
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three-dimensions with the formation of stiff chains in three
directions instead of two. It is well known (Deresiewicz 1958)
that the shear moduli of the simple cubic array depend only on

two principal stresses and are independent of the third

1

P,
principal stress. Since the moduli of the random array are
¢ expected to be of similar nature due to the 3-D "stiff columns"
3‘01 .
just postulated, it is believed that this is the reason why the
R)
! shear moduli (or S-wave velocities) have been observed to
. depend only on the principal stresses in the direction of wave
N
2 prupagation and particle motion. However, this hypothesis
should be verified once the 3-D version of CONBAL-2 is
.
developed.
:;.
" To further demonstrate the fact that the P-wave
propagation velocity (or the constrained modulus) is a function
of the principal stress in that direction only, the same random
51 array of 477 equal spheres was subjected to a biaxial
i compression-extension 1loading simulation under constant mean
. stress, a°-0.91 kgf/cmz. The corresponding stress path (a) is ;§E
shown in Fig. 11, The vertical stress, 05or Was increased up gi%l
D
" ~
to 1.374, while the horizontal stress 0y, was decreased down to ~
L] = "
) 0.447 kgf/em® (Fig. 15). Thus, o= 1/2(1.374+0.447)=0.91 as R
< iy
’ before. Again, the normalized constrained moduli D§?)/D§}), :&t'
4 . . O
were computed at specific values of the stress ratio, K=oii/ao, ‘;“
'f. v \
N Za
! X
':\:\ )
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A
o
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in bothL directions 0, and o,,. Note that for any set of .SEES:\;;
specific values of 959 and o, it is defined K=°22/°o for :':'!‘
D§§)=D;§), and K=all/oo for D§§)=D§§). If the moduli were a iﬁ"%
function of the mean stress (i.e if Eq. 1 were true), the ":"'%':EE
P-wave propagation velocity (and the modulus) would be -f':”'
unaffected by the changes in the magnitude of the principal !‘:}’::'E:E:}“,
stresses. Dsli() would be always the same in both directions, ‘,:‘?'ﬁ‘?:‘:’:
and the plot of Dég)/nzz versus K in Fig. 16 would be a '!"""
horizontal straight line. The normalized constrained moduli 'E:E
calculated with CONBAL-2 are plotted vs. K in Fig. 16. As 999 '2?:.:'5,:'::3
increases, Dég) increases in the figure. Simultaneously, as '.":
°11 decreases, Dﬁ() decreases, and the plot of D?i()/nii versus ':C
K follows a consistent curve valid for both directions. E‘%\‘m
Therefore, Fig. 16 confirms again that the constrained moduli, ottt
Dii’ are affected by the principal stress in the direction of ‘
loading only and are completely independent of the mean stress. Z‘-:,' g
Therefore, based on the above results and those of the biaxial .‘r;
loading simulation (Fig. 12), it is predicted that a granular :.::':{:
soil does not behave as a linearly elastic isotropic solid at » ::',:\'
small strains, but it changes its order of elastic symmetry m
depending on the applied principal stresses. Consequently, -:'-;:
expressions of the type of Egq. 1 can be used only for «‘:§§
isotropically consolidated soils; in all other cases, relations ."'“h:;
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of the type of Eqs. 2 and 3 should be used. The contact force
distribution, formation of stiff columns and micromechanical
statistics of this array at the end of the loading path (Figs.
15 and 17) are very similar to those obtained in biaxial
compression under different anisotropic stress conditions
(Figure 13 and 14). The crystalization appears once more;
since most initial contacts have failed at this point, new have
formed along the direction of the major applied principal
stress. At the same time, there has been a substantial
decrease in the number of contacts in the horizontal direction,
and stiff columns of particles have appeared both vertically
and horizontally.

Finally, in order to be able to generalize the above
findings for the case of uniform random arrays of unequal
quartz spheres, a random array of 531 particles of two
different diameters was generated. This aggregate was composed
of 168 spheres of radius Ry and of 363 spheres of RZ' The
ratio RI/R2 was set to 1.5, and thus not very different from
unity, so that the Mindlin-Deresiewicz theory could be applied
by using the concept of "equivalent radius”". This equivalent
radius, Re=2R1R2/(R1+R2), where Ry and R, are the radii of the

twvo particles in contact, has been used in the past in the case

of wunequal cylinders (Poritsky, 1950), and represents an
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) q‘l (X
R
. ()
i approximation to an unknown exact solution. It is derived from fhﬁw
;' ¢ !"..
the Hertz (1882) theory for smooth spheres (f=0) and can be L
i applied to the case of rough spheres as a first approximation
(Ng and Dobry, 1988)
The above array was first subjected to isotropic pressure,
" 0,= 1.31 kgf/cmz; the corresponding geometric and statistical
information is shown in Figs. 18 and 19. As the spheres are
" not identical, now there is no crystalization and the 531
. sphere aggregate is almost isotropic, as can be seen from the
‘ uniform distribution of contact angles in the polar plot of
Fig. 19 (compare with Fig. 8). Therefore, this 531-particle
i array exhibits a higher level of symmetry than the 477-sphere
? packing, and is taken to be isotropic. Even in this case, in
which there is no crystalization, there is still a number of
M particles which are not in contact and do not carry any load.
. Moreover, when comparing this packing in Fig. 18 to the 477
K)
> equal sphere assemblage in Fig. 7, no clear system of parallel
2& columns of particles can be detected transfering approximately
‘ the same forces across the whole array, but instead, the
K]

magnitude of the contact force varies with position.

The array was finally loaded under biaxial compression to gy?'
] RNt
>
; 0,,=3,32 kgf/cmz, vhile keeping ¢ constant as shown by stress gbﬁ
22 11 RSN
* path (c) in Fig. 11. The array configuration and the contact I
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! forces ‘at the end of the loading path are shown in Figure 20, ;::::.:::
é W
o IR
with the corresponding micromechanical statistics presented in !:!:;:5?

R Fig. 21. As we can see in both figures, the contacts have been "'»‘2,
..

more or less eliminated in all directions except the major and :g::%

[ Q"

minor stress directions 0,=0,, and 0,=044 - The number of éf’!ﬂf

' [ ]

. contacts has doubled in the o direction and has also bt
N 22 )
. y ()

increased more moderately in the o, direction. Most contacts :::’"::

A

have failed, and again, there are still some spheres which are ..'l’;ﬁ'

i

not subjected to any contact force. Finally, the contact ;:;-

.;l.i

; forces in this case vary again with the position of each ;:j::'::
u‘t'q:

particle. Vertical and horizontal load transmitting columns or :‘:2:':*3

[ d

"stiff chains"™ are present in Fig. 20, but they are less S"‘;

e

)

continuous and not so obvious as they were in the crystalized ”:Ef

otk

equal sphere array of Fig. 13. A close comparison between this

array of unequal spheres in Fig. 20 to the equal sphere array .\_‘

LY

l'..',

- of Fig. 13, shows that while their structures (fabrics) are sv'
o v

fundamentally dissimilar (crystalization vs. randomness) and ol

e
K} the distribution of forces within them very different, they e
4 ‘:. y
both form the majority of their contacts along the directions E"‘E

: N
\ e ~
I of the applied principal stresses, when compressed biaxially. '.{’-33'.;-
It is also interesting that the frequency distributions of the e

B

L

contact angle in all simulations at the end of their }-‘\-.‘;‘\«

PRGN

corresponding biaxial loading simulations (Figs. 14, 17, and ::-'.‘:,*
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21) have the distinctive "cross" pattern with the contacts

aligned along the directions of the applied principal stresses.

The normalized constrained moduli were also computed for
the array of Fig. 20 at various values of the stress ratio,
K=022/011, and they are plotted versus K in Fig. 22, Once more
the moduli (and consequently, the P-wave velocity) are affected
in first approximation by the principal stress in that
direction. In addition to the results of the simulation on the
unequal sphere array of Fiq. 20, Fig. 22 also includes all
points of Fig. 11, that is: the experimental data of Professor
Stokoe and his co-workers, the nonlinear finite element results
of Petrakis and Dobry (1987, 1988), and finally the results of
the nonlinear distinct element method on the array of the 477
equal ggggﬁkgpheres. All points are in excellent agreement,
thus verifying the accuracy and versatility of the approach,
and the validity of the conclusions reached for the constrained

modulus, Dii' and P-wave velocity, V of random arrays of

p’

spheres and of granular soils.
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: CONCLUSION . ::,.:.35:;
| A 2-D nonlinear distinct element simulation has been ?&ﬁ
é presented which interprets the behavior of granular soil at ;'ﬁ
, very small strains. This simulation is based on an incremental l?¢§
: solution to the nonlinear problem of two spheres in contact gﬂﬁ
4 (program CONTACT), incorporated into the available distinct :E::i
element program TRUBAL. It has been found that this approach \ﬁ%.

' not only interprets succesfully the small strain behavior of ?:ﬁ
granular soil, but it also provides a wealth of information on ig&’

the fabric changes during loading which were until now very #?1
difficult to obtain. The results of these simulations on both g&;?
isotropically and anisotropically compressed random arrays of tiﬁ(

? equal and unequal spheres, are in excellent agreement with a Sﬁkw
| number of previous analytical and numerical procedures, as well Eﬁv:
as with experimental data on sand in the 1literature. The 5x.:

: origin of the above phenomena is the changes in the structure &_Bﬁ
: of the granular medium which occur when 1loaded, and Eﬁkf
; specifically, the formation of columns of particles supporting ;g}\
approximately the same contact force along the directions of S:‘E

p the applied principal stresses. Therefore, the distribution :ﬁﬁ

and magnitude of the contact forces are of great importance to
. the macroscopic response of the medium. The above phenomena,

which are micromechanical in nature, can only be modelled
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analytiéally if the particulate nature of the soil is taken

into consideration and the contact forces are realistically

modelled.
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DISTINCT ELEMENT METHOD

(Prograins BALL, TRUBAL developed by Peter Cundall)

Time ¢
Py
P,
B P,
ZPi produces acceleration of particle
IMi produces angular acceleration (spin) of
particle

Acceleration and Spin Computed as if Neighboring
Particles did not exist. Time step is assumed to be
small such that accelerations and velocities are

constant in this small time.

Time t + At
« Particle occupies new position due to acceleration
« New Pi's, Mi's are computed for new positions
* IPi, ZMi and process is repeated.

Figure 3. Outline of the Main Features of the Distinct
Element Method
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Regular Cubic Arrays
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Walton (1987)
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